点击下载生意通,与百万生意人谈生意!

曲轴

相关词条
连杆
轧辊
   引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。
颈和两个止推面。在这种情况下,即使是使用成形砂轮磨削,只要使用强力冷却、合理的磨削余量和选择好砂轮参数,一般情况下可以避免磨削烧伤缺陷的出现。在使用窄砂轮磨削止推轴颈时,可采用的方案是:调整程序和砂轮的角度磨削,使砂轮从轴颈的右侧以斜切方式进入,磨削至要求尺寸,再快速沿原角度方向斜退出;使砂轮从轴颈的左侧以斜切方式进入,磨削至要求尺寸,再快速沿原角度方向斜退出;使砂轮从轴颈的中间快速切入磨削至要求尺寸,再快速退出。在上述磨削时,要应用强力冷却。至此,止推轴颈及两侧面磨削完毕。
使是使用窄砂轮磨削,使用强力冷却,也很难避免磨削烧伤缺陷的出现。下面分两种磨削方式来分述解决方案:
  (1)成形磨削。在成形磨削中,其产生烧伤的主要原因是磨削热的大量积累和冷却液无法进入而造成的退火烧伤,退火烧伤造成曲轴止推面硬度下降,表层产生退火组织,止推面的耐磨性变差,严重影响发动机的运行稳定性。根据其造成烧伤的主要因素,我们分别从3个方面入手:选择合适的砂轮、选择合理的磨削余量和改善冷却条件。
  ①选择合适的砂轮。淬火钢曲轴止推面硬度高、面积大,砂粒易磨钝。为了避免砂粒磨钝而产生大量磨削热,砂轮硬度宜选软些,以便磨钝的砂粒及时脱落,保持砂轮的自锐性。组织较软的砂轮气孔多,其中可以容纳切屑,避免砂轮堵塞,又可将冷却液或空气带入磨削区域,从而使磨削区域温度降低。
  在保证曲轴止推面粗糙度要求的前提下,宜选择较粗粒度的砂轮,以达到较高的去除比率;另外,砂轮必须精细地平衡,以便砂轮工作时处于良好的平衡状态;砂轮必须及时修整以保持其锋利;影响砂轮修整频次的因素很多,包括被磨材料的纯度和类型、冷却液的净度等;修整砂轮的金刚石支座必须牢固,若金刚石表面上有0.5~0.6mm的磨损量,标志金刚石已磨钝了,应及时更换;严格控制砂轮传动系统及砂轮心轴的间隙;砂轮传动带松紧调整合适。
  ②选择合理的磨削余量和磨削参数。在生产实践中,常以提高工件速度,减少径向进给量来减少工件表面烧伤和裂纹。有一种经验为0.1mm磨削法,即在最后加工的0.1mm余量中,逐渐减少进给量,可以去掉前两次磨削行程中产生的表面损伤层,以减少磨削烧伤。
  根据以上理论,我们在生产实践中采用曲轴止推轴颈多工序磨削,分为粗磨、半精磨和静磨等工序。经过多工序磨削后,曲轴止推轴颈直径余量为0.15~0.25mm,止推面单边余量为0.04~0.07mm,成形磨削再配以强力冷却等措施,可有效避免烧伤缺陷的产生。值得一提的是,选择合理的磨削余量,还可以防止止推面出现喇叭口形状(因防止烧伤,一般选择较软的砂轮,余量太大,磨粒脱落较块,容易出现锥面)。
  ③改善冷却条件,实施强力冷却。冷却液必须有效充分,冷却液必须喷到磨削区域;流量一般为40~45L/min,以实现充分冷却;压力一般为0.8~1.2N/mm2,以冲去粘在砂轮上的切屑;保持冷却液的纯净,妥善地过滤,以清除冷却液的切屑、磨粒等脏物;冷却液的容器要足够大,以免掺入过多的气体或泡沫;防止冷却液的温度急剧升高或降低,一般控制冷却系统的容积和工作间的室温,就足以控制冷却液的温度,然而在特殊储况下应当使用散热器。
  (2)窄砂轮磨削(砂轮宽度低于止推轴颈档宽尺寸)。在使用窄砂轮磨削中,成形磨削采用的防烧伤措施均可应用于此种方法的磨削,只不过窄砂轮磨削在砂轮进给方式上可有更多的选择。一种是径向切入法磨削,此种磨削如调整不当可造成前文所述的喇叭口形状;另一种是斜切方式磨削,第一步,使砂轮从轴颈的右侧以斜切方式进入,磨削至要求尺寸,再快速沿原角度方向斜退出;第二步,使砂轮从轴颈的左侧以斜切方式进入,磨削至要求尺寸,再快速沿原角度方向斜退出;第三步,使砂轮从轴颈的中间快速切入磨削至要求尺寸,再快速推出。其工序磨削余量和冷却方式与成形磨削采用一致的参数。

曲轴磨损的特点及原因

  曲轴轴颈表面的磨损是不均匀的,主轴颈与连杆轴颈的径向磨损主要呈椭圆形,且其最大磨损部位相互对应,即各主轴颈的最大磨损处靠近连杆轴颈一侧;而连杆轴颈的最大磨损处也是靠近主轴颈一侧。曲轴轴颈沿轴向还有锥形磨损。
  轴颈的椭圆形磨损是由于作用于轴颈上的力沿圆周方向分布不均匀引起的。发动机工作时,连杆轴颈所受的综合作用力始终作用在连杆轴颈的内侧,方向沿曲轴半径向外,造成连杆轴颈内侧磨损最大,形成椭圆形。连杆轴颈产生锥形磨损的原因是由于通向连杆轴颈的油道是倾斜的,当曲轴回转时,在离心力的作用下,润滑油中的机械杂质偏积在连杆轴颈的一侧,加速了该侧轴颈的磨损,使连杆轴颈的磨损呈锥形。此外,连杆弯曲、气缸中心线与曲轴中心线不垂直等原因,都会使轴颈沿轴向受力不均,而使磨损偏斜。
  主轴颈的磨损呈椭圆形,主要是由于受到连杆、连杆轴颈及曲柄臂离心力的影响,使靠近连杆轴颈的一侧与轴承产生的相对磨损较大。
  此外,轴颈表面还可能出现擦伤与烧伤。擦伤主要是由于机油不清洁,其中较大的坚硬机械杂质在轴颈表面刻划引起的。轴颈表面的烧伤是由于烧瓦引起的,烧瓦主要是由于润滑不足、机油过稀、油路阻塞等原因造成的。

曲轴磨损后的修复

  一般来说,轴颈直径在80mm以下,圆度及圆柱度误差超过0.025mm;或轴颈直径在80mm以上。圆度及圆柱度误差超过0.0400的曲轴,均应按规定尺寸进行修磨,或进行振动堆焊、镀铬、镀铁后再磨削至规定购尺才或修理尺寸。
  1曲轴的磨削
  曲轴轴颈的磨削是在曲轴校正的基础上进行的。曲轴的磨削除了轴颈表面尺寸精度和表面粗糙度符合技术要求外,还必须达到形位公差的要求:磨削曲轴时,必须保证主轴颈和连杆轴颈各轴心线的同轴度及两轴心线间的平行度,限制曲柄半径误差。并保证连杆轴颈相互位置夹角的精度。曲轴的磨削通常是在专用的曲轴磨床上进行的。
  2连杆轴颈的磨削
  由于连杆轴颈磨损不均匀,由此产生两种磨削方法:偏心磨削法和同心磨削法。
  同心磨削法就是磨削后保持连杆轴颈的轴线位置不变,即曲柄半径和分配角不变。柴油机曲轴磨削时,常采用同心法,保持曲柄半径不变,柴油机的压缩比不变,但每次的磨削量大。当前,在汽车使用期内,大修次数减少,用同心法可以确保发动机性能不变。
  偏心磨削法是按磨损后的连杆轴颈表面来定位磨削的,这时轴颈的中心线位置和曲柄半径均发生了变化。一般磨削后曲柄半径大于原曲柄半径,使压缩比增大,而且各缸变化不均匀,同时使整个曲轴的质量中心不处于曲轴主轴颈中心线上,引起曲轴不平衡,造成运转时的附加动载荷。因此,在连杆轴颈磨削时,应尽量减少曲柄半径的增加量,保证同位连杆轴颈轴心线的同轴度误差不大于±0.10mm,这样才能保证曲轴运转中的平衡。
  3曲轴严重磨损后的修复
  如果发动机曲轴磨损严重,磨削法无法修复或效果较差,可采用等离子喷涂法来修复。
  (1)喷涂前轴颈的表面处理
  ①根据轴颈的磨损情况,在曲轴磨床上将其磨圆,直径一般减少0.50—1.00mm。
  ②用铜皮对所要喷涂轴颈的邻近轴颈进行遮蔽保护。
  ③用拉毛机对待涂表面进行拉毛处理。用镍条作电极,在6~9V、200~300A交流电下使镍熔化在轴颈表面上。
  (2)喷涂
  将曲轴卡在可旋转的工作台上,调整好喷枪与工件的距离(100mm左右)。选镍包铝(Ni/AL)为打底材料,耐磨合金铸铁(NT)与镍包铝的混合物为工作层材料;底层厚度一般为0.20mm左右,工作层厚度根据需要而定。喷涂规范见表1。
  喷涂过程中,所喷轴颈的温度一般要控制在150~170℃。喷涂后的曲轴放入150—180℃的烘箱内保温2h,并随箱冷却,以减少喷涂层与轴颈间的应力。
  (3)喷涂后的处理
  喷涂后要检查喷涂层与轴颈基体是否结合紧密,如不够紧密,则除掉重喷。如检查合格,可对曲轴进行磨削加工。由于等离子喷涂层硬度较高,一般选用较软的碳化锡砂轮进行磨削,磨削时进给量要小一些(0.05—0.10mm),以免挤裂涂层。另外,磨削后一定要用砂条对油道孔进行研磨,以免毛刺刮伤瓦片。经清洗后,将曲轴浸入80—100℃的润滑油中煮8~10h,待润滑油充分渗入涂层后即可装车使用。
  发动机在大修中必须对曲轴进行检验,查明磨损情况,并进行正确的修理,保证曲轴所要求的疲劳强度和耐磨性。
赞助商链接